25 research outputs found

    Compressed sensing performance bounds under Poisson noise

    Full text link
    This paper describes performance bounds for compressed sensing (CS) where the underlying sparse or compressible (sparsely approximable) signal is a vector of nonnegative intensities whose measurements are corrupted by Poisson noise. In this setting, standard CS techniques cannot be applied directly for several reasons. First, the usual signal-independent and/or bounded noise models do not apply to Poisson noise, which is non-additive and signal-dependent. Second, the CS matrices typically considered are not feasible in real optical systems because they do not adhere to important constraints, such as nonnegativity and photon flux preservation. Third, the typical â„“2\ell_2--â„“1\ell_1 minimization leads to overfitting in the high-intensity regions and oversmoothing in the low-intensity areas. In this paper, we describe how a feasible positivity- and flux-preserving sensing matrix can be constructed, and then analyze the performance of a CS reconstruction approach for Poisson data that minimizes an objective function consisting of a negative Poisson log likelihood term and a penalty term which measures signal sparsity. We show that, as the overall intensity of the underlying signal increases, an upper bound on the reconstruction error decays at an appropriate rate (depending on the compressibility of the signal), but that for a fixed signal intensity, the signal-dependent part of the error bound actually grows with the number of measurements or sensors. This surprising fact is both proved theoretically and justified based on physical intuition.Comment: 12 pages, 3 pdf figures; accepted for publication in IEEE Transactions on Signal Processin

    Sparse Poisson Intensity Reconstruction Algorithms

    Full text link
    The observations in many applications consist of counts of discrete events, such as photons hitting a dector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f) from Poisson data (y) cannot be accomplished by minimizing a conventional l2-l1 objective function. The problem addressed in this paper is the estimation of f from y in an inverse problem setting, where (a) the number of unknowns may potentially be larger than the number of observations and (b) f admits a sparse approximation in some basis. The optimization formulation considered in this paper uses a negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates key ideas of using quadratic separable approximations to the objective function at each iteration and computationally efficient partition-based multiscale estimation methods.Comment: 4 pages, 4 figures, PDFLaTeX, Submitted to IEEE Workshop on Statistical Signal Processing, 200

    POISSON IMAGE RECONSTRUCTION WITH TOTAL VARIATION REGULARIZATION

    No full text
    This paper describes an optimization framework for reconstructing nonnegative image intensities from linear projections contaminated with Poisson noise. Such Poisson inverse problems arise in a variety of applications, ranging from medical imaging to astronomy. A total variation regularization term is used to counter the ill-posedness of the inverse problem and results in reconstructions that are piecewise smooth. The proposed algorithm sequentially approximates the objective function with a regularized quadratic surrogate which can easily be minimized. Unlike alternative methods, this approach ensures that the natural nonnegativity constraints are satisfied without placing prohibitive restrictions on the nature of the linear projections to ensure computational tractability. The resulting algorithm is computationally efficient and outperforms similar methods using wavelet-sparsity or partition-based regularization. Index Terms — Photon-limited imaging, Poisson noise, total variation, convex optimization, sparse approximatio

    SPARSITY-REGULARIZED PHOTON-LIMITED IMAGING

    No full text
    In many medical imaging applications (e.g., SPECT, PET), the data are a count of the number of photons incident on a detector array. When the number of photons is small, the measurement process is best modeled with a Poisson distribution. The problem addressed in this paper is the estimation of an underlying intensity from photon-limited projections where the intensity admits a sparse or low-complexity representation. This approach is based on recent inroads in sparse reconstruction methods inspired by compressed sensing. However, unlike most recent advances in this area, the optimization formulation we explore uses a penalized negative Poisson loglikelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the nonnegatively constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates sequential separable quadratic approximations to the log-likelihood and computationally efficient partition-based multiscale estimation methods

    Spiral out of convexity: Sparsityregularized algorithms for photon-limited imaging

    No full text
    ABSTRACT The observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f ) from Poisson data (y) cannot be accomplished by minimizing a conventional 2 -1 objective function. The problem addressed in this paper is the estimation of f from y in an inverse problem setting, where (a) the number of unknowns may potentially be larger than the number of observations and (b) f admits a sparse representation. The optimization formulation considered in this paper uses a negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates key ideas of using quadratic separable approximations to the objective function at each iteration and computationally efficient partition-based multiscale estimation methods
    corecore